## The Role of Financial Connectedness in Predicting Crises

| Camelia Minoiu*   | International Monetary Fund |
|-------------------|-----------------------------|
| Chanhyun Kang     | University of Maryland      |
| V.S. Subrahmanian | University of Maryland      |
| Anamaria Berea    | George Mason University     |

INET Workshop on Interlinkages and Systemic Risk Ancona, July 4-5, 2013







\*The views expressed herein are those of the authors and should not be attributed to the IMF or IMF



- Assess whether <u>financial connectedness</u> is a strong predictor of financial crises.
  - Type of crises: Systemic banking crises
  - Empirical tests: Global banking network (GBN)
  - Provide an Early Warning System for banking crises using a mix of:
  - Data mining models ("classification algorithm")
    - Leverage methods already proven successful in many different applications (manufacturing, terrorist attacks, etc.)
  - Standard regression analysis (probit/logit)
    - Drawing on larger 'early warning systems' literature, especially for currency crises in emerging market countries

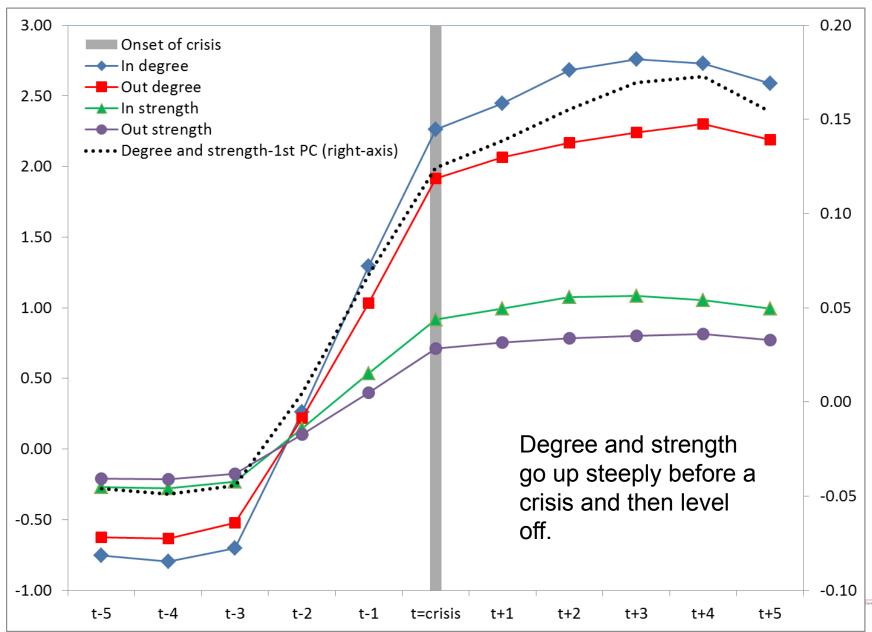


#### **Key Results**

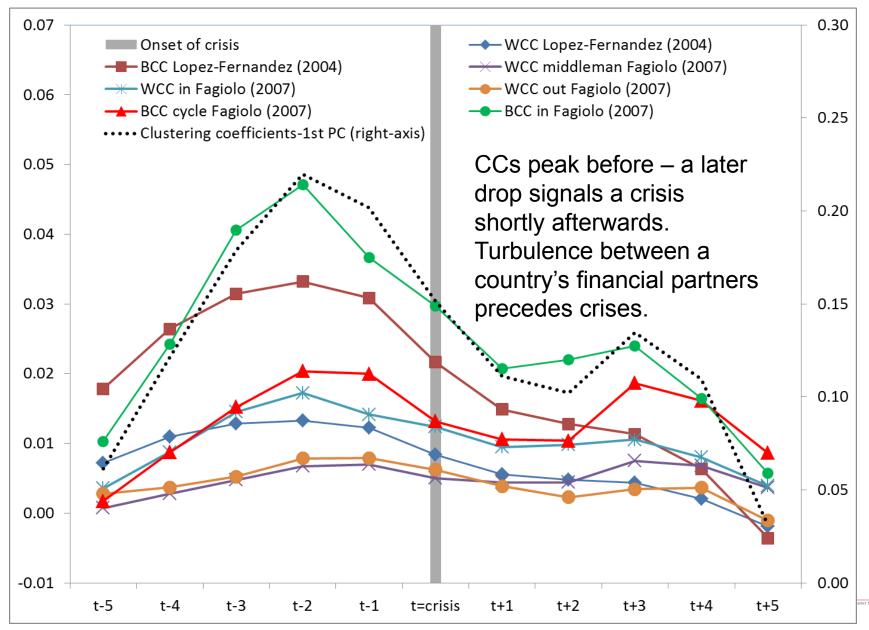
- The paper's key results are summarized in the next 3 charts.
- These depict the evolution of network indicators conditional on country-specific factors and global shocks before and after the onset of systemic banking crises
- We have removed the correlation of the network indicators with global factors and country-specific unobserved factors by regressing them against a full set of country and year dummies.



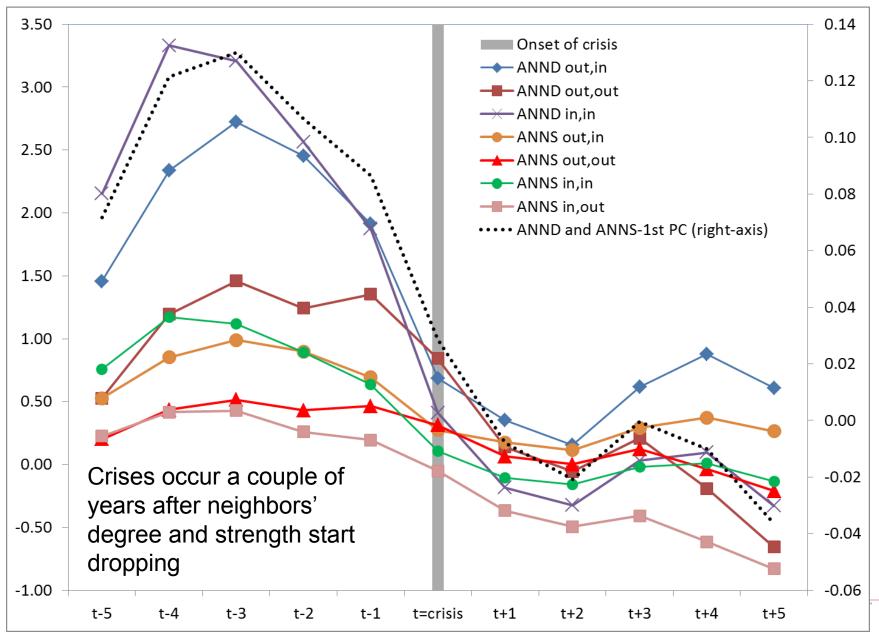
#### Key Result #1



#### Key Result #2



#### Key Result #3



#### The rest of the talk focuses on the evidence supporting the intuition provided by these results.



#### **The Data**

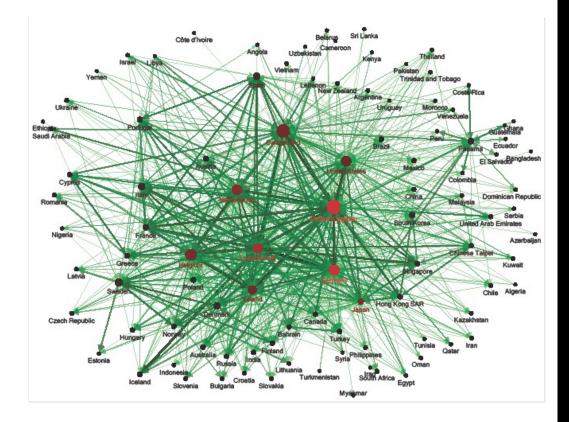
- BIS locational banking statistics (1978-2010) on cross-border banking system exposures/assets (stocks of claims)
- Data represent the claims of banks in BIS reporting countries vis-à-vis borrowers in foreign countries
  - Exposures include loans, securities and other bank assets
  - Good coverage of cross-border banking activity
  - Reporting banks in each reporting country account for more than 90% of total banking assets in that country
  - Sample: 210 countries
  - 29 "core" (BIS reporting) countries
  - 181 "periphery" countries
  - Banking crisis incidence data: Laeven & Valencia (2012)



#### From Data to Network Time Series

- We build binary and weighted directed networks for each year
- Nodes are countries
- Edge (a,b) from country a to b
- Exists in our binary network if "a" has non-zero exposure to "b"
- Edge is weighted by the size of the exposure (log) divided by the log-product of country GDPs.
- We do not have edges among periphery countries.

#### Global banking network, 2007





#### From Network Time Series to Structured Data

- We represent the network time series data in matrix format:
  - Rows correspond to country-year pairs
  - Columns correspond to
    - 1 dependent variable denoting whether a systemic banking crisis occurred or not ("crisis year), 0 otherwise ("tranquil year")
    - 27 explanatory variables denoting network-based measures of connectedness in the GBN (+ lagged levels and growth rates up to 5 years 
      162 variables)
      - centrality measures, clustering coefficients, etc.



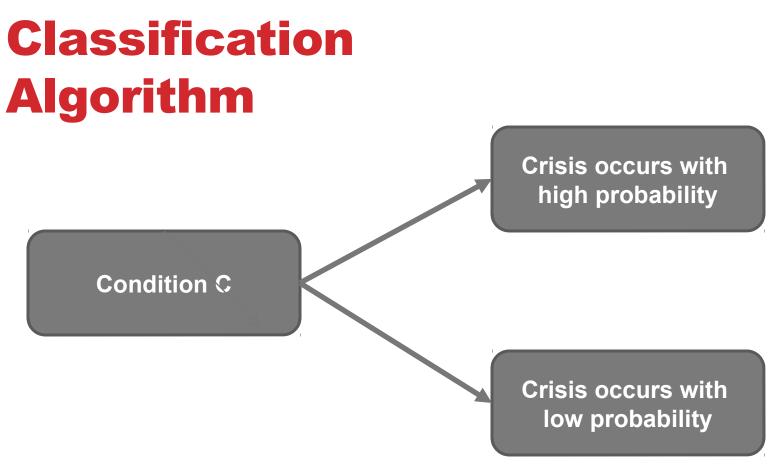
#### **Connectedness Measures: Examples**

5

- Degree and strength
- Fagiolo's (2007) clustering coefficients: measures probability that neighbors of a node are connected with each other
- Lopez-Fernandez (2004) clustering coefficient: captures effectiveness of connection between neighbors of a node
- Degree and strength of nearest neighbors (ANND, ANNS)

Trend towards higher connectedness

TO



Find condition C on the network-based measures of connectedness such that:
P(crisis =1 | C) is high

**P**(crisis = 1| not C) is low

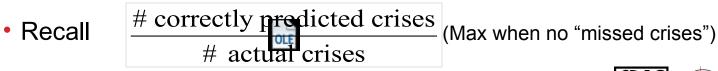
|crisis = 1 AND C| exceeds a threshold

|crisis = 0 AND not C| exceeds a threshold



#### **Classification Algorithm**

- Ran the algorithm on three time periods:
  - Full period: 1978-2010
  - First- and second-generation ("traditional") crises: 1978-2002
  - Third-generation, advanced economy crises: 2003-2010
  - Evaluated the performance of the algorithm along two dimensions:
  - Precision # correctly predicted crises Max when no "false alarms") # predicted crises





### **Results (in-sample)**

| Sample    | Period    | # crises | # predicted crises | Support | Precision | Recall | # sub-rules |       |
|-----------|-----------|----------|--------------------|---------|-----------|--------|-------------|-------|
|           |           | [1]      | [2[                | [3]     | [4]       | [5]    | [6]         |       |
| Full      | 1978-2010 | 410      | 149                | 136     | 0.91      | 0.33   | 46          |       |
| Full      | 1978-2002 | 330      | 354                | 292     | 0.82      | 0.88   | 297         |       |
| Full      | 2003-2010 | 80       | 57                 | 45      | 0.79      | 0.56   | 21          |       |
| Core      | 1978-2010 | 88       | 63                 | 58      | 0.92      | 0.66   | 36          | •     |
| Core      | 1978-2002 | 46       | 64                 | 46      | 0.72      | 1.00   | 202         |       |
| Core      | 2003-2010 | 42       | 25                 | 23      | 0.92      | 0.55   | 3           | Тоо   |
| Periphery | 1978-2010 | 322      | 114                | 101     | 0.89      | 0.31   | 31          | many  |
| Periphery | 1978-2002 | 284      | 145                | 133     | 0.92      | 0.47   | 44          | rules |
| Periphery | 2003-2010 | 38       | 43                 | 38      | 0.88      | 1.00   | 265         |       |



#### **Example of One Specific Rule: All Countries, 1978-2010**

When the growth over 3 years in average in-strength of in-neighbor nodes is between 0.12287 and 0.12334, then a crisis will occur.

- If we considered the rules individually, precision was high but recall was low
- So we merged all rules into a "super-rule" by taking the OR of all the individual rules to predict crises

Increased recall with no loss of precision



#### **Example of One Specific Rule: All Countries, 2003-2010**

|                                      | _            |              |
|--------------------------------------|--------------|--------------|
| Rule                                 | Lower bound  | Upper bound  |
| GrowthRate(HHI(v), -2)               | 0.024124534  | 0.043913405  |
| $GrowthRate(BCC_{Cycle}^{2}(v), -5)$ | -0.253523861 | -0.195630671 |
| GrowthRate(HHI(v), -5)               | -0.040088371 | -0.030071167 |
| $GrowthRate(d_v^{in}, -3)$           | 0.005649713  | 0.011494258  |
| $GrowthRate(d_v^{in}, -2)$           | 0.005747121  | 0.007042259  |
| $GrowthRate(d_v^{in}, -2)$           | -0.040000005 | -0.024096381 |
| $WCC^2_{Out}(v)$                     | 0.095180728  | 0.09931889   |
| $BCC_{In}^2(v)$                      | 0.316091949  | 0.323436609  |
| $AN^{in}(v)$                         | 0.615592889  | 0.639510078  |
| GrowthRate(HHI(v), -1)               | 0.011667656  | 0.0187932    |
| $GrowthRate(d_v^{out}, -5)$          | 0.042105258  | 0.046875005  |
| $GrowthRate(WCC^2_{Cycle}(v), -5)$   | -0.27239354  | -0.199317272 |
| GrowthRate(HHI(v), -3)               | 0.023758372  | 0.047009138  |
| $GrowthRate(d_v^{out}, -2)$          | -0.00961539  | -0.005847948 |
| $ANNS^{out,in}(v)$                   | 13.21653627  | 13.37243705  |
| $ANND^{in,in}(v)$                    | 38.46590909  | 39.05952381  |
| $GrowthRate(d_v^{out}, -1)$          | -0.029126219 | -0.021276591 |
| $GrowthRate(d_v^{in}, -1)$           | -0.014184402 | -0.01123595  |
| $ANND^{out,in}(v)$                   | 37.31764705  | 38.03448276  |
| $d_v^{out}$                          | 70           | 72.00000001  |
| HHI(v)                               | 0.006006213  | 0.006213756  |
|                                      |              |              |

If we considered the rules individually, precision was high but recall was low.



# From Classification Algorithm to Regression Analysis

- The classification algorithm identifies the following families of variables (sometimes with varying lags)
  - Degree and strength of a country (node)
  - Clustering coefficients both binary and weighted
  - Degree and strength of a country's neighbors (ANND, ANNS)
  - Herfindahl-Hirschman Index
- We group the indicators into 3 categories and extract the 1st and 2nd principal components
  - 1st principal component typically explains 90% of the variation



#### **Standard Regression Analysis** (Probit)

- Specified a probit model of banking crisis prediction with the following macroeconomic variables:
  - Per capita income (GDP)
  - Net foreign assets /GDP
  - Dummy variable for sustained episode of capital inflows ("capital flows bonanza")
  - Foreign exchange reserves/GDP
  - Real exchange rate misalignment (higher values indicate overvaluation)
  - Estimated the model with and without network indicators

# Included predictors both in 1-year lagged levels and growth rates



#### **Probit Results: Macroeconomic Fundamentals**

Coefficients on macroeconomic variables have the expected signs and are statistically significant

(continued on next slide)

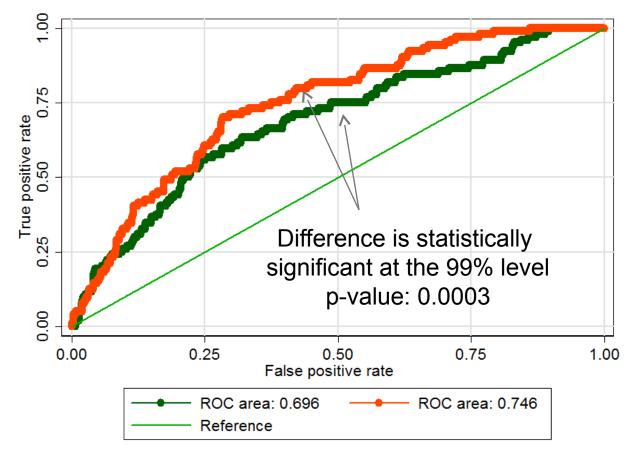
#### **Probit Results: Add Network Indicators**

- Connectedness is statistically significantly associated with onset of crises:
  - Higher own connectedness increases the likelihood of crises
  - Lower neighbor connectedness also increases it, suggesting contagion
  - AUROC between the baseline and enhanced models increases

# Degree

#### **Probit Results: AUROC Improvement**

- AUROC rises from 0.696 (baseline) to 0.746 (enhanced model)
- Adding network indicators improves AUROC especially at high levels of false positives
- Financial connectedness helps improve crisis prediction especially for conservative policymakers





#### In-sample Prediction for Onset of 2007-08 Crises

Notes: For core count sample ov

#### **Out-of-sample Prediction for Onset of 2007-08 Crises**

Notes: For subsample prediction;

#### **Take-home Messages**

- Degree and strength of countries seem to go up before a crisis – and stabilize after it.
- Clustering coefficients go up 1-2 years before a crisis and then start dropping.
- Degree and strength of neighbors start dropping 3-4 years before a crisis, providing a potentially very early signal of a systemic banking crisis.

All of these financial connectedness measures can potentially form key signals for an early warning system.



#### Conclusion

- Assessed the usefulness of network-based connectedness indicators for crisis prediction using an empirical GBN over 1978-2010
  - Focused on systemic banking crises in the last decade, when connectedness has played a more prominent role
  - Results based on two methods -- classification algorithm & standard regression model -- suggest that financial connectedness can help predict when crises occur
  - Future work:
  - Alternative sets of network indicators
  - Alternative empirical banking networks (more granular)

