Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions

Bank-firm credit network in Japan. A bipartite analysis and the characterization and time evolution of clusters of credit

L. Marotta, S. Miccichè, Y. Fujiwara, H. Iyetomi, H. Aoyama, M. Gallegati, R. N. Mantegna

INET WORKSHOP, Ancona, July 5 2013

http:://ocs.unipa.it

L. Marotta et al.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions

Many tanks to:

L. Marotta et al.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions

A praise of Interdisciplinarity

Global science map based on citing similarities among ISI Subject Categories (2010)

Method from Rafols, Porter and Leydesdorff (2009)

Rafols, Porter and Leydesdorff (2009)

L. Marotta et al.

ubase Definitions BRIM Commonoco 00000 0000

Community characterization

409997

Conclusions

A praise of Interdisciplinarity

The Remarkable Properties of Mythological Social Networks

The social network between characters in Homer's Odyssey is remarkably similar to real social networks today. That suggests the story is based, at least in part, on real events, say researchers

Ten years ago, few people would have heard of a social network. Today, Facebook, Twitter and LinkedIn permeate our lives. They show us how we are linked to each other and how we are

J. P Miranda et al., http://arxiv.org/abs/1306.2537, 2013

L. Marotta et al.

Community characterization

409997

A praise of Interdisciplinarity

The Remarkable Properties of Mythological Social Networks

The social network between characters in Homer's Odyssey is remarkably similar to real social networks today. That suggests the story is based, at least in part, on real events, say researchers

Ten years ago, few people would have heard of a social network Today Facebook, Twitter and LinkedIn permeate our lives. They show us how we are linked to each other and how we are

Scientific Question

Can we exploit methods and techniques of network theory to show the credit market is a networked market?

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Netwo	rked Marke	et			

Networked Market: a market where relationships among agents are formed in a preferential way rather than randomly, as in the models of labour market described in M.O. Jackson, *Social and economic networks*, chapter 10

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

2 Basic Definitions

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- 1 Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- 3 BRIM In Japanese Credit Network

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- BRIM In Japanese Credit Network
 Issues in modularity maximization

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- 3 BRIM In Japanese Credit Network
 - Issues in modularity maximization
 - Results

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- 3 BRIM In Japanese Credit Network
 - Issues in modularity maximization
 - Results
- 4 Statistically Validated Characterization of Communities

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- BRIM In Japanese Credit Network
 - Issues in modularity maximization
 - Results
- Statistically Validated Characterization of Communities
 Introduction

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- 3 BRIM In Japanese Credit Network
 - Issues in modularity maximization
 - Results
- Statistically Validated Characterization of Communities
 - Introduction
 - Validation Results

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- 3 BRIM In Japanese Credit Network
 - Issues in modularity maximization
 - Results
- Statistically Validated Characterization of Communities
 - Introduction
 - Validation Results
- 5 Know the "Unkonwn"

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Outline					

- Database Description
- 2 Basic Definitions
 - Bipartite Networks
 - Community Detection in Networks
- 3 BRIM In Japanese Credit Network
 - Issues in modularity maximization
 - Results
- 4 Statistically Validated Characterization of Communities
 - Introduction
 - Validation Results
- 5 Know the "Unkonwn"
- 6 Conclusions

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions

Database Description

Our dataset is based on a survey of firms quoted in the Japanese stock exchange markets (Tokyo, Osaka, Nagoya, in the order of market size) and spans a period which goes from 1980 to 2012

Since 1996 the dataset includes also over-the-counter (OTC) market and/or on JASDAQ (the present OTC market)

Metadata to identify economic sector and main office prefecture of firms and the type of banks

Database	Definitions ●0000	BRIM 000000	Community characterization	409997	Conclusions
Bipartite Networks					

Bipartite Networks

Networks with two disjoint sets of nodes with no links among each other

L. Marotta et al.

Database	Definitions ●0000	BRIM 000000	Community characterization	409997	Conclusions
Bipartite Networks					

Bipartite Networks

Networks with two disjoint sets of nodes with no links among each other

actors and movies

L. Marotta et al.

Database	Definitions • 0000	BRIM 000000	Community characterization	409997	Conclusions
Bipartite Network	ks				
Bipartit	e Networ	ks			

Networks with two disjoint sets of nodes with no links among each other

- actors and movies
- authors and papers

L. Marotta et al.

Database	Definitions ●○○○○	BRIM 000000	Community characterization	409997	Conclusions
Bipartite Networks					

Bipartite Networks

Networks with two disjoint sets of nodes with no links among each other

- actors and movies
- authors and papers
- banks and firms

Database	Definitions ●0000	BRIM 000000	Community characterization	409997	Conclusions
Bipartite Networks					

Bipartite Networks

Networks with two disjoint sets of nodes with no links among each other

- actors and movies
- authors and papers
- banks and firms

Projected Network

We can obtain a unipartite network by linking to nodes of the same set if the share a link with a node of the other one. But projection leads to some loss of information.

Database	Definitions	BRIM	Community characterization	409997	Conclusions
	0000	000000	00000000		
Community Dot	action in Natworks				

Community detection: what is a community?

The aim of community detection in networks is to identify the communities and, possibly, their hierarchical organization, by only using the information encoded in the network topology

Generic definition

Subsets of vertices with a high density of links within them, joined by a low number of links

Community detections is problematic when $n \ll m$, with *n* number of vertices and *m* total number of links.

L. Marotta et al.

Database	Definitions	BRIM	Community characterization	409997	Conclusions
	0000	000000	00000000		
Community Dat	antion in Maturalia				

Community Detection in Networks

Modularity as a fitness measure

Partition: a division in clusters of a given network. Algorithms for detection:

- divisive
- aggregative
- hierarchical

How can we assess the quality of the partitions they deliver? Modularity(Newman and Girvan, 2006):

$$Q = \frac{1}{2m} \sum_{i,j} (A_{i,j} - P_{i,j}) \delta(\mathbf{g}_i, \mathbf{g}_j)$$

with $A_{i,j}$ adjacency matrix and $P_{i,j}$ null model. $P_{i,j}$:

- retains some structural property of the original graph (number of edges, vertex degree, etc.)
- does not show community structure

Simple graph with its corresponding adjacency matrix

Database	Definitions	BRIM	Community characterization	409997	Conclusions
	00000	000000	00000000		
Community Detect	on in Networks				

Bipartite Modularity and BRIM algorithm

Modularity for bipartite networks (Barber, 2007)

$$\mathbf{A} = \begin{bmatrix} \mathbf{O}_{p \times p} & \tilde{\mathbf{A}}_{p \times q} \\ \tilde{\mathbf{A}}_{q \times p}^T & \mathbf{O}_{q \times q} \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} \mathbf{O}_{p \times p} & \tilde{\mathbf{P}}_{p \times q} \\ \tilde{\mathbf{P}}_{q \times p}^T & \mathbf{O}_{q \times q} \end{bmatrix}$$

$$\mathbf{B} = \mathbf{A} - \mathbf{P}$$

with p and q number of vertices belonging to the two set and $\tilde{P_{ij}} = \frac{k_i d_j}{m}$

Bipartite Recursive Induced Modularity

$$\mathbf{Q} = \frac{1}{m} \mathrm{Tr} \mathbf{R}^{\mathsf{T}} \tilde{\mathbf{B}} \mathbf{T}$$

R and **T** are community index matrix with dimensions $p \times c$ and $q \times c$ respectively, where c is the number of communities. To maximize modularity:

- Choose a random number of initial communities $(1 \le c \le \min(p, q))$
- Randomly assign the nodes belonging to one set to the communities
- Assign the nodes of the other set in order to maximize the matrix product above
- Iterate the procedure until the modularity stops increasing
- Repeat these steps with a different number of initial communities in order to explore the configuration space

Database	Definitions ○○○○●	BRIM 000000	Community characterization	409997	Conclusions
Community De	tection in Networks				
~					

Community Index Matrix

$$\mathbf{T} = \begin{pmatrix} c_1 & c_2 & c_3 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

L. Marotta et al.

Database	Definitions 00000	BRIM ●00000	Community characterization	409997	Conclusions
Issues in modul	arity maximization				
Sparser	ness				

Snapshot of the network in 2011. Squares are banks and circles are firms. Colors identify different prefectures

Evolution of the ratio of the number of nodes n to the total amount of edges m during 1980/2013

Database	Definitions 00000	BRIM o●oooo	Community characterization	409997	Conclusions
Issues in modu	larity maximization				

The Local Maxima Trap

Modularity landscape for the metabolic network of the spirochete *Treponema Pallidum* as in Good *et al.*, 2009. The global maximum of modularity is surrounded by a plateau of sub-optimal high modularities corresponding to

quite different partitions.

L. Marotta et al.

INET WORKSHOP, Ancona, July 5 2013

Execute the BRIM algorithm choosing the best modularity partion over 100 runs ↓ Repeat with different random seeds for 20 times ↓ Average the number of final communities obtained in the 20 runs

Database	Definitions 00000	BRIM ○○●○○○	Community characterization	409997	Conclusions
Results					

BRIM Results: Listed + OTC firms

- The number of communities is increasing over times
- The jump in 1996 is due to the OTC firms include by Nikkei
- The high variance in the number of communities is significantly reduced considering only clusters with more than 10 elements

- The number of vertex is increasing over time as well
- From 2000 on is almost constant or even decreasing
- A change in market regulation can account for the behaviour in early 2000s

L. Marotta et al.

Database	Definitions 00000	BRIM ○○●○○○	Community characterization	409997	Conclusions
Results					

BRIM Results: Listed + OTC firms

- The number of communities is increasing over times
- The jump in 1996 is due to the OTC firms include by Nikkei
- The high variance in the number of communities is significantly reduced considering only clusters with more than 10 elements

- The number of vertex is increasing over time as well
- From 2000 on is almost constant or even decreasing
- A change in market regulation can account for the behaviour in early 2000s

L. Marotta et al.

Database	Definitions 00000	BRIM ○○○●○○	Community characterization	409997	Conclusions
Results					
BRIM	Results: L	isted			

Similar results can be achieved filtering the database to retain only listed firms

L. Marotta et al.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Results					
BRIM	Results: L	isted			

Similar results can be achieved filtering the database to retain only listed firms

L. Marotta et al.

Database	Definitions 00000	BRIM ○○○○●○	Community characterization	409997	Conclusions
Results					

Stability of Best Partitions: Listed + OTC firms

How many times a couple (i, j) belonging to the same community in the best partition is in the same cluster in the other 19 realizations?

stability improves at the end of the time period

Database	Definitions 00000	BRIM ○○○○○●	Community characterization	409997	Conclusions
Results					

Stability of Best Partitions: Listed firms

BRIM 2011

L. Marotta et al.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Introduction					
Introdu	uction				

Are there any guiding principles driving the system self-organization? Characterization of clusters with a methodology developed in Palermo¹

Bank Metadata: bank type

- City Banks
- Regional Banks
- Insurance Banks
- Ο ...

Firm Metadata: prefecture and economic sector and subsector

- Tokyo
- Aichi
- Construction
- Credit Leasing
- ...

¹M. Tumminello *et al*, J Stat Mech-Theory Exp P01019 (2011)

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Introduction					

Statistical Validation

Suppose we are interested in understanding wheter the frequency of a certain property k(for sake of simplicity, let's kindicate one of the bank type) in one of the community detected is statistically significant. In more precise terms: given

- N_n banks in the whole set
- N_a banks in cluster A
- N_k banks of type k in the whole set
- N_{a,k} banks of type k in cluster A

What is the probability that $N_{a,k}$ are in A by chance?

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Introduction					

Statistical Validation: *p*-value

The probability of $N_{a,k}$ random occurencies in the set A can be calculated exactly using the hypergeometric distribution.

$$P(N_{a,k}|N_n, N_a, N_k) = \frac{\begin{pmatrix} N_a \\ N_{a,k} \end{pmatrix} \begin{pmatrix} N_n - N_a \\ N_k - N_{a,k} \end{pmatrix}}{\begin{pmatrix} N_n \\ N_k \end{pmatrix}}$$

With this probability we can associate a *p*-value to the presence of $N > N_{a,k}$ banks of type *k* in cluster A:

$$p = 1 - \sum_{i}^{N_{a,k}} \frac{\binom{N_{a}}{i} \binom{N_{n} - N_{a}}{N_{k} - N_{a,k}}}{\binom{N_{n}}{N_{k}}}$$

L. Marotta et al.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Introduction					

Statistical Validation: Bonferroni Threshold

The statistical validation we are performing implies the execution of a multiple testing hypothesis.

Therefore, in setting a statistical threshold to evaluate the p-values we calculate, we need to adopt the so called multiple hypothesis test correction.

Bonferroni correction

by requiring a θ statistical threshold for the single test, the threshold B for the multiple test procedure is set to $B=\theta/T$ where T is the total number of tested hypotheses.

The Bonferroni correction is the most restrictive test correction.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Validation Results					

We check the over-expression of bank's and firm's attributes

bank type Year Electric & electronic equipment 1981 21 510 14 Electric & electronic equipment city banks 1982 21 534 14 city banks 1983 19 515 13 14 Electric & electronic equipment city banks 1984 17 549 14 Electric & electronic equipment city banks 1985 18 547 14 Electric & electronic equipment city banks 1986 19 553 13 14 city banks 1987 20 597 14 Electric & electronic equipment city banks 1088 21 611 14 Electric & electronic equipment city banks 1080 20 600 14 Electric & electronic equipment city banks 1990 21 651 Electric & electronic equipment city banks 1991 15 589 Electric & electronic equipment city banks 1992 20 650 13 Electric & electronic equipment city banks 17 605 13 14 Electric & electronic equipment 1993 city banks 1994 18 694 city banks 13 1995 14 668 city banks 1006 18 1016 13 14 city banks 1997 1003 13 14 Services city banks 1998 21 1027 13 14 Services city banks 1999 14 1104 13 14 Services. Wholesale trade city banks 2000 12 14 Services Wholesale trade city banks 880 13 27 2001 941 Services Wholesale trade city banks 2002 7 892 13 Services. Wholesale trade city banks 2003 7 894 13 Services Wholesale trade city banks 2004 930 13 Services Wholesale trade 2005 8 971 13 14 Services. Wholesale trade city banks 2006 8 884 13 14 Services. Wholesale trade 2007 14 13 14 968 Services Wholesale trade 2008 7 794 13 Services. Wholesale trade 2009 790 13 14 Services. Wholesale trade 2010 739 13 14 Services Wholesale trade 2011 9 703 13 14 Services Wholesale trade

Evolution of the largest cluster

13 = Tokyo, 14 = Kanagawa, 27 = Osaka

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Validation Results					

The appearance of new over-expressed economic sectors starting from 1997 hints for a different sector concentration between listed and OTC firms. Repeating the analysis on the two subnetworks we confirm this intuition

			Listed fi	rms					OTC firms		
Year	banks	firms	prefecture	sector	bank type	Year	banks	firms	prefecture	sector	bank type
1980	23	512	-	El. & elect. eq.	city banks	2000	12	309	13	-	city banks
1981	19	494	14	El. & elect. eq.	city banks	2001	7	289	13	_	city banks
1982	12	448	-	-	city banks	2002	10	220	12		city banks
1983	19	528	14	El. & elect. eq.	city banks	2002	10	228	15	_	CILY DATIKS
1984	17	535	14	El. & elect. eq.	city banks	2003	5	355	13	Services	city banks
1985	16	535	-	- '	city banks	2004	8	377	13	Services	city banks
1986	22	670	14	-	city banks	2005	6	372	13	Services	city banks
1987	16	541	-	-	city banks	2006	7	364	13	Services	-
1988	18	586	-	-	city banks	2007	6	371	13	Services	-
1989	18	610	-	-	city banks	2008	5	312	13	Services	city banks
1990	22	649	-	El. & elect. eq.	city banks	2000		0000	15	Scivices	City Daliks
1991	18	612	13	-	city banks	2009	4	2223	13	Services	-
1992	18	660	_	-	city banks	2010	6	259	13 14	Services	-
1993	16	608	-	-	city banks	2011	5	236	-	-	-

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Validation Results					

Year	banks	firms	prefecture	sector	bank type
1980	48	257	-	-	life ins. banks - ins. banks
1981	42	177	-	Util. elect.	life ins. banks - ins. banks
1982	49	194	-	Util. elect.	life ins. banks - ins. banks
1983	47	190	-	Util. elect.	life ins. banks - ins. banks
1984	48	154	-	Util. elect.	life ins. banks - ins. banks
1985	47	167	13	Util. elect.	life ins. banks - ins. banks
1986	50	174	13	Util. elect.	life ins. banks - ins. banks
1987	98	216	13 34 40	Cred. leas.	ins. banks
1988	129	265	13 34 40	Cred. leas.	ins. banks
1989	51	223	-	Cred. leas.	life ins. banks - ins. banks
1990	27	249	-	Rail. trans.	life ins. banks
1991	133	236	40	Cred. leas.	-
1992	108	188	13 15	Cred. leas.	ins. banks
1993	124	245	13	Cred. leas.	ins. banks
1994	55	226	-	Cred. leas.	life ins. banks - ins. banks
1995	47	228	13	Cred. leas.	life ins. banks - ins. banks
1996	-	-	-	-	-
1997	69	209	13	Cred. leas.	life ins. banks - ins. banks
1998	82	236	13	Cred. leas.	ins. banks
1999	-	-	-	-	-
2000	70	136	13	Cred. leas.	ins. banks
2001	103	327	34 37 40	Cred. leas.	ins. banks
2002	58	96	-	Cred. leas.	ins. banks
2003	55	97	-	Cred. leas.	-

Year	banks	firms	prefecture	sector	bank type
1980	93	191	13	Construction	regional banks
1981	91	201	13	Construction	regional banks
1982	89	208	13	Construction	regional banks
1983	81	209	40	Construction	regional banks
1984	91	217	-	-	regional banks
1985	80	201	40	Construction	regional banks
1986	78	189	34 40	Construction	regional banks

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Validation Results					

community detection restricting the database only to a certain type of $\operatorname{\mathsf{bank}}$

City Banks and Listed Firms								
Year	banks	firms	prefecture	sector				
1980	3	237	-	-				
1980	3	344	-	-				
1980	3	365	13	-				
1980	5	367	-	-				
1981	1	129	13	-				
1981	2	209	-	-				
1981	2	218	-	-				
1981	4	226	27	-				
1981	3	272	-	_				
1981	2	277	13	-				
1982	1	144	21 23	-				
1982	2	199	14	-				
1982	3	308	-	-				
1982	4	341	-	-				
1982	3	351	13	-				

	Regional Banks and Listed Firms							
Year	banks	firms	prefecture	sector				
1980	35	118	13	-				
1980	35	188	34 40	-				
1980	33	251	27 28	-				
1980	19	274	17 22	-				
1980	14	292	12 13 14	Motor Vehicles & Auto Parts				
1981	1	3	-	-				
1981	26	65	-	-				
1981	7	105	22	-				
1981	18	152	10 13	-				
1981	35	173	34 40	-				
1981	17	195	16 17 23	-				
1981	21	206	26 27 28	-				
1981	10	244	13 14	-				
1982	7	87	16 17	-				
1982	7	90	10	-				
1982	25	131	13 15	-				
1982	39	121	40	Construction				
1982	14	156	-	-				
1982	29	235	21 23 26 27 28	-				
1982	12	333	12 13 14 22	-				

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Validation Results					

Japanese Prefectures

1»	Hokkaido	北海道
2 >	Aomori» 青森県	
3»	Iwate》 岩手県	
4 »	Miyagi》宮城県	
5 »	Akita 秋田県	
6 >	Yamagata	山形県
7»	Fukushima	福島県
8 >	Ibaraki»茨城県	
9 »	Tochigi》栃木県	
10»	Gunma》 群馬県	
11»	Saitama。埼玉県	
12»	Chiba》 千葉県	
13»	Tokyo» 東京都	
14»	Kanagawa	神奈川県
15»	Niigata》新潟県	
16»	Toyama》 富山県	
17»	Ishikawa»	石川県
18»	Fukui》 福井県	
19»	Yamanashi>	山梨県
20×	Nagano» 長野県	
21»	Gifu》 岐阜県	
22»	Shizuoka	静岡県
23»	Aichi》 愛知県	
2 4 >	Mie» 三重県	
25»	Shiga》 滋賀県	
26»	Kyoto» 京都府	

27»	0saka»	大阪府	
28»	Hyogo	兵庫県	
29»	Nara»	奈良県	
30×	Wakayama	3>	和歌山県
31»	Tottori	鳥取県	
32»	Shimane	島根県	
33»	0kayama	岡山県	
34»	Hiroshin	na»	広島県
35»	Yamaguch	ni»	山口県
36×	Tokushin	na»	徳島県
37»	Kagawa	香川県	
38×	Ehime»	愛媛県	
39»	Kochi»	高知県	
40 >	Fukuoka	福岡県	
41 >	Saga	佐賀県	
42×	Nagasaki	×	長崎県
43 ×	Kumamoto)»	熊本県
44»	0ita»	大分県	
45»	Miyazaki	L>	宮崎県
46 >	Kagoshin	na»	鹿児島県
47»	0kinawa	沖縄県	

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions

Shadow banking system rises?

Commercial/Non-commercial credit ratio

Credit from Other non financial Institutions

Code 409997 corresponds to Unkown

L. Marotta et al.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
More o	n 400007				

The structure of the network changes abruptly with hundreds of firm starting to link exclusively with this *aggregate* from 2000 on.

L. Marotta et al.

Database	Definitions 00000	BRIM 000000	Community characterization	409997	Conclusions
Conclu	sions				

- The credit market considered as a bipartite network has a community structure
- A statistical validation of the communities in terms of firm localization and economic sector and bank nature reveals reasonably stable long range patterns
- We believe the above results provide evidence that the credit market is a networked market where these attributes play an important role in determining the probability that a credit relationships will be agreed between a firm and a bank.
- Agent Based Models should embody these features in their agent behavioural rules and market implementation

