| Introduction | Data | Model | Simulation | Conclusion |
|--------------|------|-------|------------|------------|
|              |      |       |            |            |

## **Ownership Networks and Aggregate Volatility**

Lorenzo Burlon

Research Department, Bank of Italy

#### INET Workshop "Interlinkages and systemic risk"

July 5, 2013

The views expressed do not reflect those of the Bank of Italy.

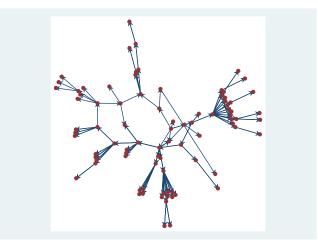
Question 1: Business cycles from macro or micro shocks?

- Law of large numbers and diversification
- Jovanovich (1987, QJE)

Question 2: Granular or network mechanism?

- Gabaix (2011, Econ.trica)
- Acemoglu et al. (2012, Econ.trica)
- di Giovanni et al. (2012, WP)

Question 3: Which network?


- Input-Output: Foerster et al. (2012, JPE)
- Financial liabilities: Acemoglu et al. (2013, WP)
- Ownership: Elliott Gollub Jackson (2013, WP)

 
 Introduction
 Data ⊙⊙⊙
 Model ⊙⊙⊙⊙
 Simulation ⊙⊙⊙⊙⊙
 Conclusion ⊙

 NETWORK THEORY OF OWNERSHIP RELATIONS

Properties of ownership networks:

- Directed, weighted, acyclic, incomplete.
- Pyramids with ultimate owner and subsidiaries.





• Vertical propagation: Tunneling and Propping.

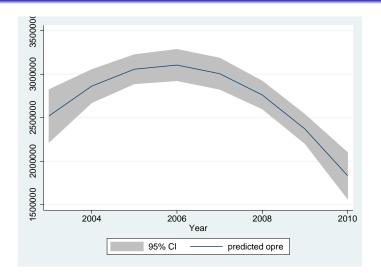
```
Riyanto and Toolsema (2008, JBan&Fin), Dow and McGuire (2009, JBan&Fin).
```

• Horizontal propagation: Cross-subsidization and Winner-Picking.

Bulow, Geanakoplos, Klemperer (1985, JPE), Cestone and Fumagalli (2005, RAND).

• Complex propagation: Internal capital market(s).

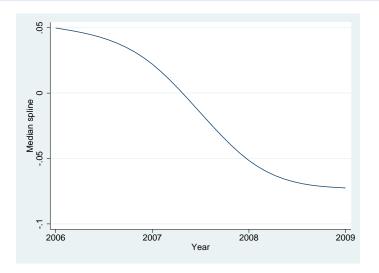
Gertner, Scharfstein, Stein (1994, QJE), Lamont (1997, JFin), Samphantharak (2006, WP), Almeida & Kim (2012, WP).


| Introduction | Data        | Model | Simulation | Conclusion |
|--------------|-------------|-------|------------|------------|
|              | 00000       |       |            |            |
| OWNERSHI     | P DATA: SUM | MARY  |            |            |

The Infocamere data (Chambers of Commerce): census of Italian firms with information on distribution of equity and economic performance.

| Year | Links                        | Firms                                                             | Owners                                                                                               |
|------|------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 2006 |                              | -                                                                 | 1,561,796                                                                                            |
|      |                              |                                                                   | 1,653,329                                                                                            |
|      |                              |                                                                   | 1,682,723                                                                                            |
| 2009 |                              |                                                                   | 1,747,105                                                                                            |
| 2010 | 2,647,335                    | ,                                                                 | 1,875,085                                                                                            |
|      | 11,906,440                   | 1,166,624                                                         | 2,463,274                                                                                            |
|      | 2006<br>2007<br>2008<br>2009 | 20062,169,83220072,310,29620082,337,98920092,440,98820102,647,335 | 20062,169,832718,88620072,310,296773,28720082,337,989797,70320092,440,988842,80720102,647,335926,578 |

**Table:** Details for each wave: Date, Number of ownership links, Number of firms, Number of owners.



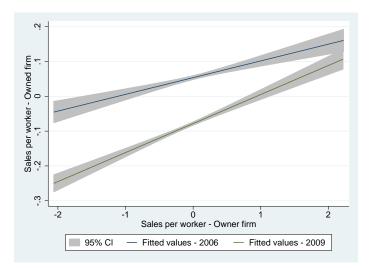



**Figure:** Operating revenue from 2003 to 2010. Fractional polynomial regression with 95% confidence interval.

| 000          | 000000 | 0000000 | 000000     |            |
|--------------|--------|---------|------------|------------|
| Introduction | Data   | Model   | Simulation | Conclusion |



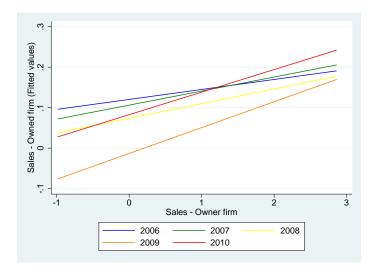



**Figure:** Year-on-year growth rate of sales per worker from 2006 to 2009. Median spline with 10 points between knots.

| Introduction | Data      | Model   | Simulation | Conclusion |
|--------------|-----------|---------|------------|------------|
| 000          | 000●00    | 0000000 | 000000     | O          |
| CORRELATION  | AMONG FIR | MS      |            |            |

Two facts:

- There is correlation between firms that share an ownership link.
- 2 The correlation seems to increase during the credit crunch.

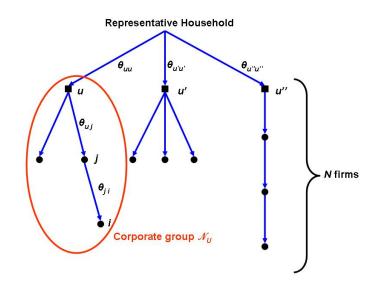





**Figure:** Growth of sales per worker, owner firm vs. owned firm. Linear prediction with 95% confidence interval, 2006 and 2009.








**Figure:** Growth of sales, owner firm vs. owned firm. Linear prediction, All years.

| Introduction | Data   | Model   | Simulation | Conclusion |
|--------------|--------|---------|------------|------------|
| 000          | 000000 | ●oooooo | 000000     | O          |
| FRAMEWORK    |        |         |            |            |

- Small open economy.
- International credit market: infinite supply at rate  $R_t$ .
- Continuum of identical households  $\rightarrow$  Representative household.
- *N* firms partitioned into corporate groups, with ultimate owner firms at the top.
- General equilibrium: Equity market, Labor market.





| Introduction | Data   | Model   | Simulation | Conclusion |
|--------------|--------|---------|------------|------------|
| 000          | 000000 | oo●oooo | 000000     | O          |
| HOUSEHOLD S  | IDE    |         |            |            |

- No access to credit markets.
- Works, trades equities, consumes.

Solves

$$\max \mathbb{E} \sum_{\tau=0}^{+\infty} \beta^{\tau} \frac{\left(C_{\tau} - \psi L_{\tau}\right)^{1-\sigma} - 1}{1-\sigma},$$

subject to

$$\sum_{u \in \mathscr{U}} \theta_{uu\tau+1} P_{u\tau} + C_{\tau} \leq W_{\tau} L_{\tau} + \sum_{u \in \mathscr{U}} \theta_{uu\tau} \left( D_{u\tau} + P_{u\tau} \right).$$

| Introduction | Data   | Model   | Simulation | Conclusion |
|--------------|--------|---------|------------|------------|
| 000          | 000000 | ooo●ooo | 000000     | O          |
| FIRM SIDE    |        |         |            |            |

Flow-of-funds constraint of firm *j*:

$$D_{jt} + W_t L_{jt} + R_t B_{jt} + I_{jt} = Y_{jt} + \sum_{i \in \mathscr{N}_j^{in}} \theta_{ji} D_{it} + B_{jt+1}.$$

Dividends of ultimate owner *u*:

$$D_{ut} = \sum_{j \in \mathcal{N}_u} m_{uj} \left[ Y_{jt} + B_{jt+1} - R_t B_{jt} - W_t L_{jt} - I_{jt} \right],$$

where

$$m_{uj} = \sum_{k=0}^{+\infty} \theta_{uj}^{[k]} = \theta_{uj} + \sum_{i} \theta_{ui} \theta_{ij} + \sum_{l} \sum_{i} \theta_{ul} \theta_{li} \theta_{ij} + \cdots$$

 $\longrightarrow$  Weighted Bonacich centrality with the net cash flows as weights.

# Introduction Data Model Simulation Conclusion 000 000000 000000 000000 0

Ultimate owner u chooses  $\{L_{jt}, K_{jt+1}, B_{jt+1}\}_{t \geq \tau}^{j \in \mathcal{N}_u}$  to

$$\max \mathbb{E}_{\tau} \left[ \sum_{t=\tau}^{+\infty} \beta^{t-\tau} \left( \frac{C_t - \psi L_t}{C_{\tau} - \psi L_{\tau}} \right)^{-\sigma} D_{ut} \right],$$

subject to

$$D_{ut} = \sum_{j \in \mathcal{N}_u} m_{uj} \left[ Y_{jt} + B_{jt+1} - \frac{R_t}{R_t} B_{jt} - W_t L_{jt} - K_{jt+1} + (1-\delta) K_{jt} \right],$$

$$Y_{jt} = \mathbf{A}_{jt}^{1-\epsilon} \left( \mathbf{K}_{jt}^{\alpha_j} \mathbf{L}_{jt}^{1-\alpha_j} \right)^{\epsilon},$$

and

 $B_{jt+1} \leq \kappa_{jt} K_{jt+1}.$ 

 Introduction
 Data
 Model
 Simulation
 Conclusion

 000
 000000
 000000
 000000
 0

#### Proposition

If  $R < 1/\beta$ , then the loglinearized equilibrium around the deterministic steady state is such that

$$\hat{Y}_{jt} = \hat{A}_{jt} + C_{Yj}\kappa_j(1-eta R)\hat{\kappa}_{jt-1} - C_{Yj}\kappa_jeta R\hat{R}_t + C_{Yj}(1-\kappa_j)\hat{eta}_t$$

and

$$\hat{\beta}_t = \pi_R(\mathbf{L})\hat{R}_t - \pi_A(\mathbf{L})\hat{\mathbf{A}}_t - \pi_\kappa(\mathbf{L})\hat{\boldsymbol{\kappa}}_{t-1},$$

where

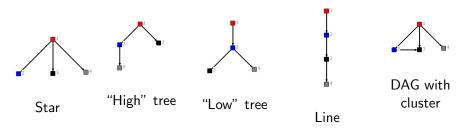
$$C_{Yj} = rac{\epsilon lpha_j}{1-\epsilon} rac{1}{1-eta(1-\delta)-\kappa_j(1-eta R)},$$

 $\pi_R(\mathbf{L})$  is a polynomial of the lead operator  $\mathbf{L}$ ,  $\pi_A(\mathbf{L})$  and  $\pi_\kappa(\mathbf{L})$  are  $1 \times N$  vectors of polynomials of the lead operator  $\mathbf{L}$ , and  $\hat{\mathbf{A}}_t$  and  $\hat{\mathbf{\kappa}}_{t-1}$  are  $N \times 1$  vectors of firm-specific shocks.

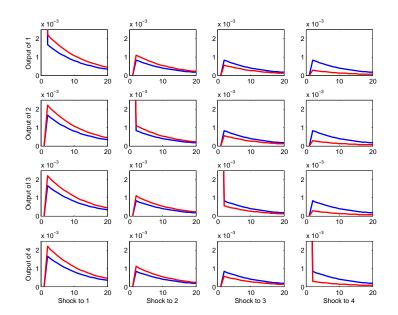


- Simulate economies with different network structures.
- Simulate stochastically a stylized economy calibrated to aggregate moments of the Italian data.

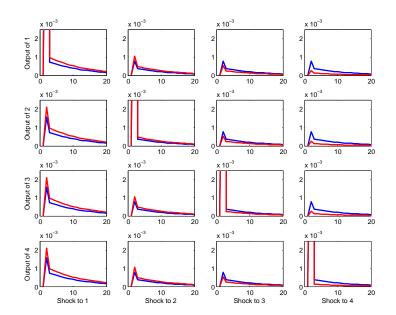
Some examples:


- size distribution of corporate groups,
- average structure of corporate groups,
- ...
- Use the model to filter the data and obtain idiosyncratic shocks. Perform counterfactual exercises.
- Olicy experiments.



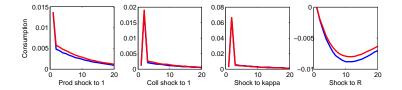

A stylized economy with 4 firms:

- one ultimate owner,
- three controlled firms,
- homogeneous capital intensities.


Look at 5 network structures:


















| Introduction<br>000 |                      | Data<br>000000 | Mode<br>0000 |                      | Simulatior<br>0000●0 | 1       | Conclusion<br>0 |
|---------------------|----------------------|----------------|--------------|----------------------|----------------------|---------|-----------------|
| IMPLIE              | D MOME               | NTS            |              |                      |                      |         |                 |
| Star                | r<br>H               | igh" tree      | "Low"        | <sup>2</sup><br>tree | Line                 |         | G with<br>uster |
|                     | Moment               | Star           | Tree 1       | Tree 2               | Line                 | Cluster |                 |
|                     | $\sigma_{C}$         | 0.0890         | 0.0877       | 0.0872               | 0.0869               | 0.0896  |                 |
|                     | $\mu_{C}$            | 3.3070         | 3.1988       | 3.0924               | 3.0387               | 3.4109  |                 |
|                     | $\sigma_{C}/\mu_{C}$ | 0.0269         | 0.0274       | 0.0282               | 0.0286               | 0.0263  |                 |

**Table:** Standard deviation, mean, and coefficient of variation implied by different network structures.

#### Introduction Data ○000 Model Simulation ○00000 Conclusion ○ WHAT TO DO WITH THE MODEL

- Simulate economies with different network structures.
- Simulate stochastically a stylized economy calibrated to aggregate moments of the Italian data.

Some examples:

- size distribution of corporate groups,
- average structure of corporate groups,
- ...
- Use the model to filter the data and obtain idiosyncratic shocks. Perform counterfactual exercises.
- Olicy experiments.

| Introduction | Data   | Model   | Simulation | Conclusion |
|--------------|--------|---------|------------|------------|
|              | 000000 | 0000000 | 000000     | •          |
| CONCLUSION   |        |         |            |            |

- There exists correlation among firms that share an ownership link.
- The dynamics of the economy depend on the network structure of ownership links.
- Horizontal diversification decreases more aggregate volatility the closer to the ultimate owners it occurs.

## **HOUSEHOLD SIDE: FOC**

FOCs of the household's problem:

$$W_{\tau} = \psi,$$

and

$$P_{u\tau} = \beta \mathbb{E}_{\tau} \left[ \left( \frac{C_{\tau+1} - \psi L_{\tau+1}}{C_{\tau} - \psi L_{\tau}} \right)^{-\sigma} (D_{u\tau} + P_{u\tau+1}) \right],$$

for every *u*.

If we iterate forward (with no bubbles):

$$P_{u\tau} = \mathbb{E}_{\tau} \left[ \sum_{t=\tau}^{+\infty} \beta^{t-\tau} \left( \frac{C_t - \psi L_t}{C_\tau - \psi L_\tau} \right)^{-\sigma} D_{ut} \right].$$

## **FIRM SIDE**

Firm *j*:

• accesses credit market under collateral constraint

$$B_{jt+1} \leq \kappa_{jt} K_{jt+1},$$

- realizes production  $Y_{jt} = A_{jt}^{1-\epsilon} \left(K_{jt}^{\alpha_j} L_{jt}^{1-\alpha_j}\right)^{\epsilon}$ ,
- accumulates capital  $K_{jt+1} = I_{jt} + (1-\delta)K_{jt}$ ,
- distributes dividends D<sub>jt</sub> to its owners.

Flow-of-funds constraint:

$$D_{jt} + W_t L_{jt} + \frac{R_t B_{jt}}{I_{jt}} + I_{jt} = Y_{jt} + \sum_{i \in \mathcal{N}_j^{in}} \theta_{ji} D_{it} + B_{jt+1}.$$

#### FIRM SIDE: ULTIMATE OWNERS

• Corporate group  $\mathcal{N}_u$ :

$$\mathcal{N}_{u} \equiv \{ j \in \mathcal{N} | \forall i \in \mathcal{N}, m_{uj} \geq m_{ij} \},\$$

where

$$m_{uj} = \sum_{k=0}^{+\infty} \theta_{uj}{}^{[k]} = \theta_{uj} + \sum_{i} \theta_{ui} \theta_{ij} + \sum_{l} \sum_{i} \theta_{ul} \theta_{li} \theta_{li} + \cdots$$

• Ultimate owner u at time  $\tau$  maximizes value:

$$\max P_{u\tau} = \mathbb{E}_{\tau} \left[ \sum_{t=\tau}^{+\infty} \beta^{t-\tau} \left( \frac{C_t - \psi L_t}{C_\tau - \psi L_\tau} \right)^{-\sigma} D_{ut} \right].$$

What is  $D_{ut}$ ?

#### **EQUILIBRIUM**

#### Definition

An intertemporal competitive general equilibrium is a sequence

$$\{C_{\tau}, L_{\tau}, W_{\tau}, \theta_{uu\tau+1}, P_{u\tau}, K_{jt+1}, L_{jt}, B_{jt+1}\}_{\tau \ge 0, t \ge \tau}^{u \in \mathscr{U}, j \in \mathscr{N}}$$

such that

- $\{C_{\tau}, L_{\tau}, \{\theta_{uu\tau+1}\}_{u \in \mathscr{U}}\}_{\tau \geq 0}$  solves the representative household problem given  $\{W_t, \{P_{u\tau}\}_{u \in \mathscr{U}}\}_{\tau \geq 0}$ ,
- $\{\{K_{jt+1}, L_{jt}, B_{jt+1}\}_{j \in \mathscr{N}}\}_{t \geq \tau}$  solves ultimate owner u's problem at time  $\tau$  given  $\{C_t, L_t, W_t, R_t, \{A_{jt}, \kappa_{jt}\}_{j \in \mathscr{N}}\}_{t \geq \tau}$  for every  $u \in \mathscr{U}$  and for every  $\tau \geq 0$ ,
- the market clearing conditions hold for every  $au \geq$  0, and
- $\{R_{\tau}, \{A_{j\tau}, \kappa_{j\tau}\}_{j \in \mathscr{N}}\}_{\tau \ge 0}$  follow their stochastic processes.

## MARKET CLEARING

Equity market:

$$\theta_{uu\tau} = 1$$
 for every  $u \in \mathscr{U}$ .

Labor market:

$$\sum_{j\in\mathcal{N}}L_{j\tau}=L_{\tau}.$$

#### DETERMINISTIC STEADY STATE

#### Proposition

If  $R < 1/\beta$ , then there exists a unique deterministic steady state characterized by

$$Y_j = A_j C_{Kj} \frac{\epsilon}{1-\epsilon} \alpha_j C_{Lj} \frac{\epsilon}{1-\epsilon} (1-\alpha_j),$$

$$K_{j} = \frac{\beta}{1 - \beta(1 - \delta) - \kappa_{j}(1 - \beta R)} \epsilon \alpha_{j} Y_{j}, L_{j} = C_{Lj} Y_{j}, B_{j} = k_{j} K_{j},$$
$$L = \sum_{j \in \mathcal{N}} L_{j}, W = \psi,$$

and

$$C = \psi L + \sum_{u \in \mathscr{U}} \sum_{j \in \mathscr{N}_u} m_{uj} \left[ 1 - ((R-1)\kappa_j + \delta) C_{Kj} - \psi C_{Lj} \right] Y_{jt},$$

Q

where

$$c - \mu$$

## PARAMETER VALUES

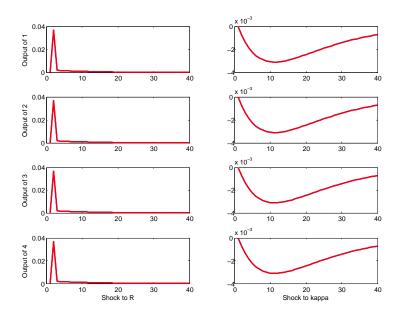
| Parameter  | Value | Origin                                   |
|------------|-------|------------------------------------------|
| $\psi$     | 1     | Bianchi (2012, NBER)                     |
| $\sigma$   | 1     | 11                                       |
| $\epsilon$ | 0.765 | Bhattacharya, Guner, Ventura (2013, RED) |
| $\alpha$   | 0.426 | 11                                       |
| δ          | 0.067 | "                                        |
| $\beta$    | 0.946 | 13                                       |

Table: Parameter values from previous literature.

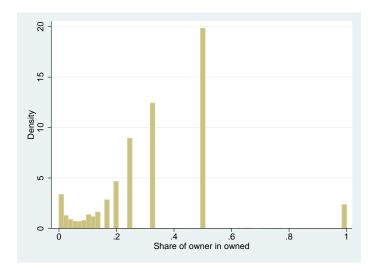
а

#### CHARACTERIZATION OF STOCHASTIC PROCESSES

Define the stochastic processes:


$$\begin{split} A_{jt} &= \exp\left(\varepsilon_{jt}^{a}\right), \text{ where } \varepsilon_{jt}^{a} \sim \mathcal{N}(0,\sigma_{a}),\\ \kappa_{jt} &= 0.5\kappa_{t}\exp\left(\varepsilon_{jt}^{\kappa}\right), \text{ where } \varepsilon_{jt}^{\kappa} \sim \mathcal{N}(0,\sigma_{\kappa}) \text{ and } \kappa_{t} \sim \mathscr{U}(0,1),\\ \text{nd} \end{split}$$

$$R_t = (1 - \rho_r)R_{ss} + \rho_r * R_{t-1} + \varepsilon_t^r, \text{ where } \varepsilon_t^r \sim \mathscr{N}(0, \sigma_r).$$


| Parameter         | Value |
|-------------------|-------|
| $\sigma_{a}$      | 0.05  |
| $\sigma_{\kappa}$ | 0.05  |
| $\sigma_r$        | 0.001 |
| $\rho_r$          | 0.9   |
| R <sub>ss</sub>   | 0.99  |
|                   |       |

**Table:** Parameter values for the stochastic simulation.

## **IRFs: AGGREGATE SHOCKS, STAR VS LINE**



#### FREQUENCY DISTRIBUTION OF OWNERSHIP



**Figure:** The frequency distribution of ownership links by share. Year: 2006.

## FREQUENCY DISTRIBUTION OF OWNERSHIP

| Year | Mean  | Std. Dev. | Min.   | Max. | Ν         |
|------|-------|-----------|--------|------|-----------|
| 2006 | 0.331 | 0.208     | 0.0001 | 1    | 2,169,832 |
| 2007 | 0.335 | 0.214     | 0.0001 | 1    | 2,310,296 |
| 2008 | 0.341 | 0.217     | 0.0001 | 1    | 2,337,989 |
| 2009 | 0.345 | 0.222     | 0.0001 | 1    | 2,440,988 |
| 2010 | 0.350 | 0.226     | 0.0003 | 1    | 2,647,335 |

**Table:** Summary statistics of the ownership links' strength. The second wave is for simplicity reported as 2007 although its date is December 31, 2006.

How many owners does each firm have?

| Year | Mean  | StDev | Max.  | Skewn.  | Kurtosis  | Ν       |
|------|-------|-------|-------|---------|-----------|---------|
| 2006 | 3.018 | 6.501 | 1,536 | 63.045  | 8,289.596 | 718,886 |
| 2007 | 2.988 | 7.427 | 1,415 | 63.192  | 6,895.980 | 773,287 |
| 2008 | 2.931 | 7.510 | 1,536 | 71.813  | 8,950.296 | 797,703 |
| 2009 | 2.896 | 7.579 | 1,536 | 68.466  | 7,880.459 | 842,807 |
| 2010 | 2.857 | 9.869 | 3,938 | 170.822 | 54,428.47 | 926,578 |

Table: Indegree distribution through time.

#### **INDEGREE DISTRIBUTION**

How many owners does each firm have?

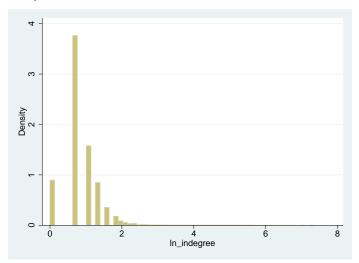



Figure: The (log) indegree distribution of ownership links. Year: 2006.

How many firms does each owner own?

| Year | Mean  | StDev | Max.  | Skewn.   | Kurtosis  | Ν         |
|------|-------|-------|-------|----------|-----------|-----------|
| 2006 | 1.389 | 2.307 | 1,221 | 214.1748 | 80,926.77 | 1,561,796 |
| 2007 | 1.397 | 2.288 | 1,212 | 211.4052 | 80,097.64 | 1,653,329 |
| 2008 | 1.389 | 2.159 | 1,106 | 192.2791 | 68,542.86 | 1,682,723 |
| 2009 | 1.397 | 2.175 | 1,151 | 197.5014 | 73,522.13 | 1,747,105 |
| 2010 | 1.412 | 6.092 | 7,027 | 894.9156 | 974,973.8 | 1,875,085 |

**Table:** Outdegree distribution through time.

#### **OUTDEGREE DISTRIBUTION**

#### How many firms does each owner own?

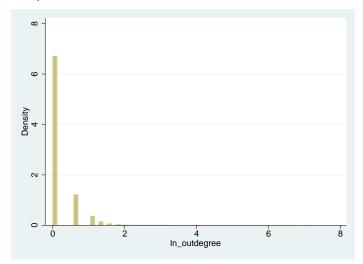



Figure: The (log) outdegree distribution of ownership links. Year: 2006.

#### 

#### **JOINT DEGREE DISTRIBUTION - 2006**

Which types of firm associate with each type of owner?

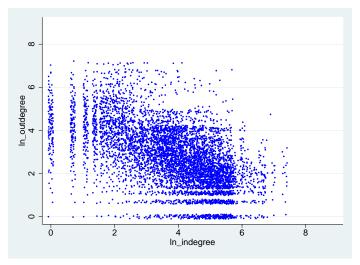
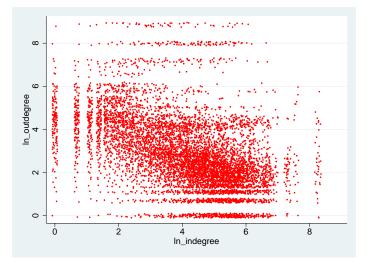
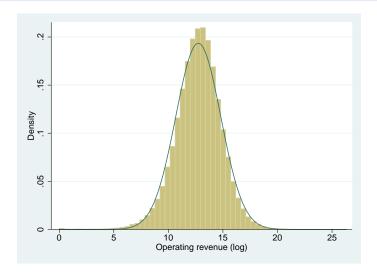



Figure: The joint distribution of (log) indegree and (log) outdegree.

#### **JOINT DEGREE DISTRIBUTION - 2010**

Which types of firm associate with each type of owner?





Figure: The joint distribution of (log) indegree and (log) outdegree.

## **PERFORMANCE DATA: REPRESENTATIVENESS**

| Year  | Coverage | Ν         |
|-------|----------|-----------|
| 2003  | 1.071    | 643,367   |
| 2004  | 1.312    | 713,044   |
| 2005  | 1.284    | 759,349   |
| 2006  | 1.510    | 784,883   |
| 2007  | 1.426    | 854,240   |
| 2008  | 1.278    | 876,673   |
| 2009  | 1.061    | 885,582   |
| 2010  | 1.134    | 842,929   |
| Total |          | 6,360,067 |

**Table:** Representativeness of the sample: Ratio of total revenue to Italian NGDP over time and number of observations for each year.

#### SIZE DISTRIBUTION OF ITALIAN FIRMS



**Figure:** The size distribution of Italian firms. Variable: (log) operating revenue in 2006.

| Year                                                  | Contemporaneous | 1 lag     | 2 lags |  |
|-------------------------------------------------------|-----------------|-----------|--------|--|
| 2006                                                  | 0.0414***       | -         | -      |  |
| 2007                                                  | 0.0291***       | 0.0158*** | -      |  |
| 2008                                                  | 0.0392***       | -0.0015   | 0.0045 |  |
| 2009                                                  | 0.0717***       | 0.0032    | 0.0050 |  |
| All years                                             | 0.0613***       | 0.0133*** | 0.0056 |  |
| * $p \le 0.10$ , ** $p \le 0.05$ , *** $p \le 0.01$ . |                 |           |        |  |

**Table:** Correlation of the (demeaned) growth rate of sales per worker of the owned firms with that of the owner firm.