

BANK FOR INTERNATIONAL SETTLEMENTS

Filling in the Blanks: Interbank Linkages and Systemic Risk Kartik Anand, Bank of Canada Ben Craig, Federal Reserve Bank of Cleveland & Deutsche Bundesbank

Goetz von Peter, Bank for International Settlements

Workshop on Interlinkages and Systemic Risk – Ancona July 2013

Motivation & Outline

- Interbank contagion is central, but bilateral linkages often unknown
- Standard: estimate counterparty exposures by maximum entropy
- Yet spreading exposures as evenly as possible can be misleading:
 - Conceals "true" structure of linkages in network analysis
 - Diversification assumption causes bias in systemic stress tests
- This short paper proposes opposite benchmark: minimum density
- Produces a highly concentrated sparse network that
 - retains some of the original network structure
 - helps provide robustness bounds on systemic stress tests.

Density 33%

Density 62%

?

Part I: Minimum Density – problem statement

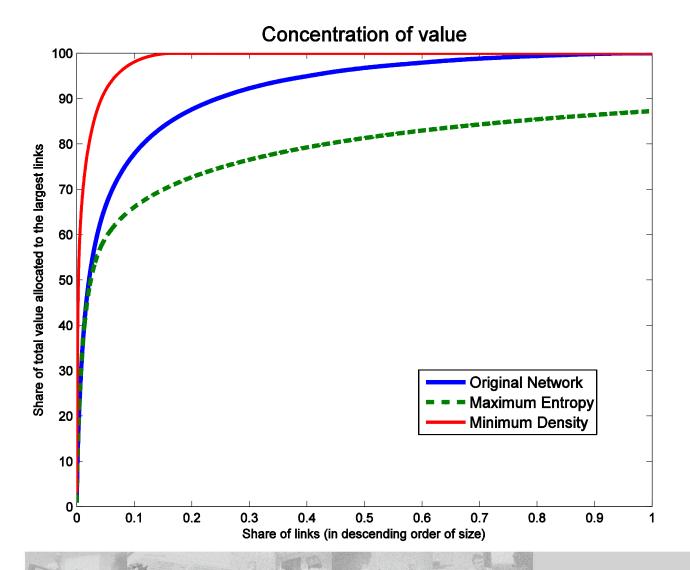
- Premise: network linkages are costly and based on relationships
- Efficiency: minimally connected network s.t. satisfying marginals

$$\begin{split} \min_{X} c \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbf{1}_{[X_{ij}>0]} \quad \text{s.t.} \\ \sum_{j=1}^{N} X_{ij} &= A_i \quad \forall i = 1, 2, \dots N \\ \sum_{i=1}^{N} X_{ij} &= L_j \quad \forall j = 1, 2, \dots N \\ X_{ij} &\geq 0 \qquad \forall i, j \end{split}$$

- Analogous to transport network design problems: NP-hard
- Exhaustive search impossible (1800 banks...)
 devise
 algorithm.

Algorithm guided by two main ideas

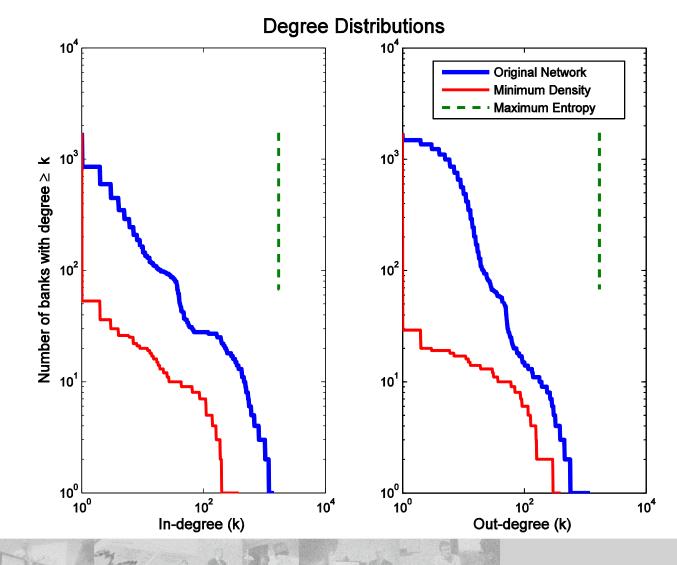
- Robust choice under uncertainty \square multinomial logit function $\max_{p \in \Delta} [\mathbf{v}'\mathbf{p} - \delta v(\mathbf{p}, \mathbf{q})] \implies p_i^* = \frac{q_i e^{v_i/\delta}}{\sum_{i \in \mu} q_i e^{v_j/\delta}}$
- Economic incentives \Box disassortative interbank relationships $Q_{ij} \propto \max\left\{\frac{AD_i}{LD_j}, \frac{LD_j}{AD_i}\right\} \quad \forall i, j \in \mu.$
- i _ j if big lender to small borrower, or small lender to big borrower
- Algorithm identifies probable links and puts maximum load until V


sertement Allow for partial loading and for full space of possible tricted

Part II: Comparison with the German Interbank Market

- The observed ("true") interbank network
 - All large ($\geq \in 1.5$ m) or concentrated (>10% K) exposures
 - Consolidated by Konzern, excluding IO, excluding XB
- Basic network characteristics
 - Large (n=1802), sparse (density=0.6%)
 - But most banks active on both sides
- Maximum Entropy (ME) conceals structure (density 93%)
- Minimum Density (MD) solution is efficient (density 0.1%), because banks with small positions drop out of set µ.
- ME and MD differ in trading off the number vs size of links.

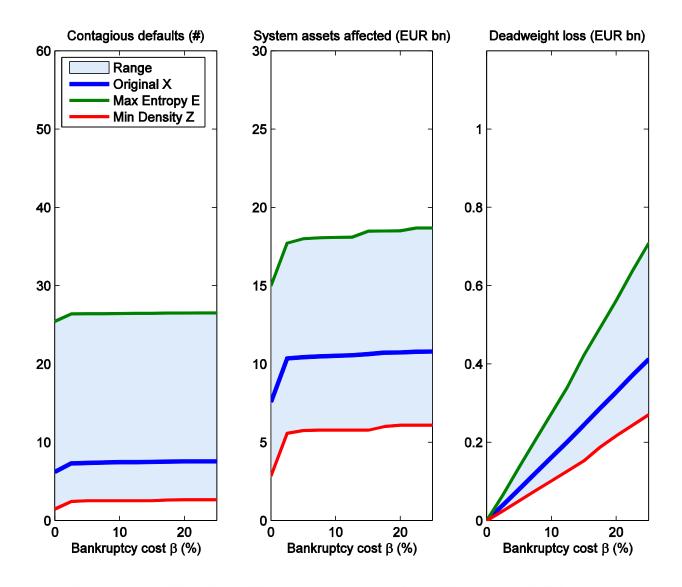
Trade-off between number and size of links



ME fails to preserve structure – MD does somewhat better

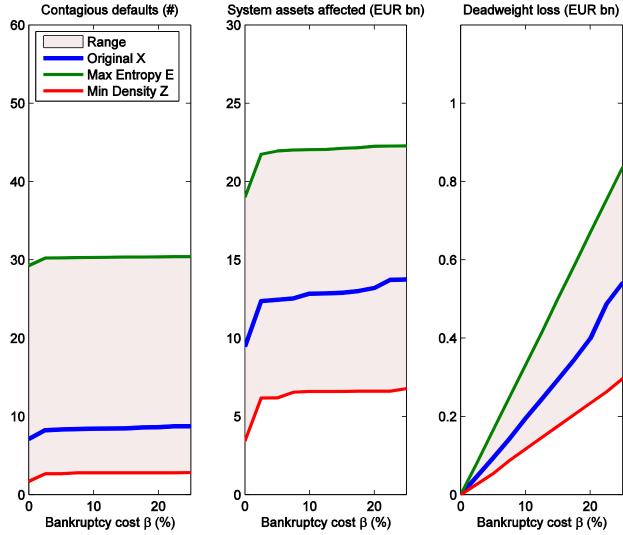
Network	E	X	Ζ
Characteristic	Max Entropy	True Network	Min Density
Density, in %	92.8	0.6	0.1
Degree (average)	1649	11.0	1.9
Degree (median)	1710	6	1
Assortativity	0.00	-0.52	-0.66
Dependence on lender, $\%$	12.2	87.0	99.3
Dependence on borrower, $\%$	7.2	43.6	99.2
Clustering local avg, $\%$	99.9	46.6	0.05
Core size, % banks	92.6	2.5	0.8
Error score, % links	21.8	12.2	12.5

Degree distribution: MD retains some features



Part III: Interlinkages and systemic risk

- Run stress tests to compare ME, MD with "true" network in practice
- Standard simulation methodology:
 - Trigger: single bank failure (+ a capital shock in Test II)
 - Mechanism: Eisenberg-Noe clearing vector (consistent)
 - LGD is endogenous + allow for liquidation/bankruptcy cost β
- Let each of 1800 banks fail 1x1, and solve for EN clearing vector,
 - # banks in default as a consequence of contagion (excludes i)
 - Interbank liabilities in default (plus bankruptcy costs)
 - Repeat for all bankruptcy costs β, and report average over i's
 - Run separately for the 3 input networks: true X, ME, MD



Stress Test I: Single bank failures

Test II: Single failures + system-wide loss of 4% in K-ratio

Conclusion

- The paper has a simple goal: to provide a meaningful alternative to maximum entropy (minimum density)
- Derived using some information theory and economic rationale
- The approach retains more information on network structure
- In stress testing it may not do better than ME ...
- ... but together with ME provide reasonable confidence bands
- The broad range shows: linkages matter for systemic risk!

Thank you for your attention.

