Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000	0000	0000	00

Beware of topology! An analysis of contagion in banking networks

Matteo Benetton

LSE, Sssup

Ancona - July 4, 2013

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	The model	Interbank network models 0000	Tiered network 0000	Conclusions
Outline				

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

1 Introduction

- Motivations
- Our work
- 2 The model
- Interbank network models
 - Capitalization
 - Connectivity
- 4 Tiered network
 - Financial contagion
 - Bank run
- 5 Conclusions

Introduction ••••••	The model 00000	Interbank network models 0000	Tiered network 0000	Conclusions 00
Motivations				
New trends	5			

"Before 1997, the term "contagion" usually referred to the spread of a medical disease"

"A Lexis-Nexis search of major newspapers since mid 1997 finds that almost all articles using the term contagion referred to the spread of financial market turmoil across countries"

> International Financial Contagion Claessens and Forbes, 2001

Introduction	The model	Interbank network models	Tiered network	Conclusions
0000				
Our work				

Related literature

Empirical literature: study the main properties of complex structure (interconnectedness, clusters, hub, concentration)

- International financial system (Garratt et al. (2011), Minoiu and Reyes (2011), Von Peter (2007))
- National interbank markets (Bech et al (2011), Boss et al (2003), Soramaki et al. (2007))

Introduction	The model	Interbank network models	Tiered network	Conclusions
0000				
Our work				

Related literature

Empirical literature: study the main properties of complex structure (interconnectedness, clusters, hub, concentration)

- International financial system (Garratt et al. (2011), Minoiu and Reyes (2011), Von Peter (2007))
- National interbank markets (Bech et al (2011), Boss et al (2003), Soramaki et al. (2007))

Theoretical literature: models of financial system as a network among banks and analysis of contagion dynamics

- Dynamic models (lori et al. (2006), Ladley (2011), Lenzu and Tedeschi (2012))
- Static models (Allen and Gale (2000), Nier et al. (2007), Gai et al. (2011))

Introduction 00000	The model 00000	Interbank network models 0000	Tiered network	Conclusions 00
Our work				
Empirical				

Stylized facts on banking networks

- low density (below 1%)
- low average path length (2-3 degrees of separation)
- power-law degree distributions
- communities and tiered structure (small-bank-large-bank dichotomy)

disassortativity

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000				
Our work				

Theoretical

Systemic risk and channels of contagion

- Information: poor performances of one bank increase borrowing costs of other banks
- Liquidity: "fire selling" of assets and falling prices due to idiosyncratic shock to a bank. Strong (specific asset type) and weak (general loss of confidence)
- Common shock: crisis as part of business cycle
- Interlocking credit exposure:
 - Financial contagion: the large scale breakdown of financial intermediation due to domino effects of insolvency
 - Bank run: liquidity hoarding by banks, which cascades and generate systemic liquidity crisis

Introduction ○000●	The model 00000	Interbank network models	Tiered network 0000	Conclusions 00
Our work				
Main o	questions			

What kind of interbank network structure is more or less prone to systemic collapse?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction ○○○○●	The model 00000	Interbank network models	Tiered network	Conclusions 00
Our work				
Main que	estions			

What kind of interbank network structure is more or less prone to systemic collapse?

 Financial contagion in Erdos-Renyi, small-world (Watts and Strogatz 1998) and scale-free (Barabasi and Albert 1999) networks

Introduction ○○○○●	The model 00000	Interbank network models	Tiered network	Conclusions 00
Our work				
Main que	estions			

What kind of interbank network structure is more or less prone to systemic collapse?

- Financial contagion in Erdos-Renyi, small-world (Watts and Strogatz 1998) and scale-free (Barabasi and Albert 1999) networks
- Probability and extent of financial contagion and systemic hoarding in a tiered banking network

Introduction 00000	The model	Interbank network models 0000	Tiered network 0000	Conclusions 00

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

Introduction

- Motivations
- Our work

2 The model

- Interbank network models
 - Capitalization
 - Connectivity
- 4 Tiered network
 - Financial contagion
 - Bank run
- 5 Conclusions

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	●0000	0000	0000	00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bank balance sheet and shocks

 $\mathsf{Credit\ shock} \to \mathsf{financial\ contagion}$

$$c_j = (e_j + i_j) - (d_j + b_j) \ge 0$$

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	●0000	0000	0000	

Bank balance sheet and shocks

 $\mathsf{Credit\ shock} \to \mathsf{financial\ contagion}$

Liabilities Assets _____ (in) (out) interbank : borrowing interbank loans b, Deposits d_i External assets e_j Net worth c . Shock to e,

Funding shock \rightarrow bank run

$$c_j = (e_j + i_j) - (d_j + b_j) \ge 0$$

$$r_j = \left(d_j + b_j + c_j\right) - \left(e_j + i_j\right) \ge 0$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Introduction	The model	Interbank network models	Tiered network	Conclusions
	00000			

Interbank network models 1

Parameter	Network type	Description	Benchmark value
E	All	Total external assets	100000
Ν	All	Number of banks in the network	25
γ	All	Percentage of net worth to total assets	0.05
θ	All	Percentage of interbank assets to total assets	0.2
p	Erdos-Renyi	Probability of connection between any two nodes	0.2
r	Small-world	Number of nearest-neighbours to connect	2
p	Small-world	Rewiring probability	0.05
d	Scale-free	Minimum node degree	2

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00●00	0000	0000	00

Interbank network models 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 00000	The model 000●0	Interbank network models	Tiered network	Conclusions 00
Tiered ne	etwork 1			

$$A = \begin{pmatrix} C - C & C - SP & C - P \\ SP - C & SP - SP & SP - P \\ P - C & P - SP & P - P \end{pmatrix} = \begin{pmatrix} 1 & 4 \times p & 0.5 \times p \\ 2 \times p & 0.5 \times p & 0.5 \times p \\ 0.1 \times p & 0.1 \times p & 0 \end{pmatrix}$$

Adjacency matrix defining the tiered network: A_{ij} is 1 if bank *i* borrows from bank *j* and 0 otherwise

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00000	The model 000●0	Interbank network models	Tiered network 0000	Conclusions

Tiered network 1

Introduction 00000	The model 0000●	Interbank network models 0000	Tiered network	Conclusions

Tiered network 2

"Core-periphery structure could be seen as a new stylized fact of modern banking systems" Fricke and Lux, 2012

Feature	Erdos-Renyi	Tiered Model	Real world	Sources
Density	0.01	0.01	< 0.01	Bech et al. (2010), Craig and Von Peter (2010) Soramaki et al. (2007)
Average path leng- th	4.2	3.0	2 – 3	Boss et al. (2003), Soramaki et al. (2007)
Clustering	0.01	0.1	0.12 - 0.28	Boss et al. (2003), Bech et al. (2010)
Out-degree/in- degree correlation	0	-0.37	~ -0.3	Bech et al. (2010), Boss et al. (2003), Soramaki et al. (2007)
Degree distribution	normal	tiered	power-law/tiered	Bech et al. (2010), Boss et al. (2003)

Introduction 00000	The model 0000●	Interbank network models	Tiered network	Conclusions 00		
Tiered network 2						

Many small creditor banks and a few large borrowing banks

Connectivit	y p = 0	p = 0.1	<i>p</i> = 0.2	<i>p</i> = 0.3	<i>p</i> = 0.4	<i>p</i> = 0.5	<i>p</i> = 0.6	<i>p</i> = 0.7	p = 0.8
Average total degree									
Large Medium Small	14 0 0	42 20 2	70 41 4	94 60 6	111 76 8	129 93 10	142 109 12	155 124 14	168 139 16
Average net position	5	_							
Large Medium Small	0 0 0	-14 -7 1	-28 -15 3	-36 -23 4	-39 -32 5	-43 -43 7	-52 -52 8	$-61 \\ -61 \\ 9$	-70 -70 11

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Introduction	The model	Interbank network models	Tiered network	Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

Introduction

- Motivations
- Our work
- 2 The model
- 3 Interbank network models
 - Capitalization
 - Connectivity
- 4 Tiered network
 - Financial contagion
 - Bank run
- 5 Conclusions

Introduction	The model	Interbank network models	Tiered network	Conclusions
		000		
Capitalization				

A "Representative cascade"

Non-linear relation between capitalization and contagion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A closer look at the distributions of defaults

Erdos-Renyi $\gamma = 1\%$ Small-world $\gamma = 1\%$ Scale-free $\gamma = 1\%$ Relative frequency Relative frequency 0.02 0.03 0.02 0.01 Relative frequency 0.2 0.1 0.1 0.1 0.0 0.0 Number of defaults Number of defaults Number of defaults $\gamma = 3\%$ $\gamma = 3.5\%$ $\gamma = 3\%$ Relative frequency Relative frequency Relative frequency Number of defaults Number of defaults 4 5 6 7 8 9 10 11 Number of defaults

A map between degree distribution and default distribution?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000		0000	00
Capitalization				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Policy implications

Extreme event

Introduction 00000	The model 00000	Interbank network models	Tiered network 0000	Conclusions
Capitalization				

Policy implications

Extreme event

Targeted shock

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000		0000	00
Capitalization				

Policy implications

Extreme event Targeted shock system Erdos-Re Erdos-Renyi Targe Small-world Erdos-Renvi All Scale_free Small-world Targeted mall-world All 20 Number of defaults Scale-free Targeted Scale_free All 0.08 0.04 0.06 0.08 0.04 0.06 Percentage net worth Percentage net worth

- Erdos-Renyi network in-between the small-world and scale-free networks
- Role played by heterogeneity → homogeneous capital requirements may work well in a small-world banking network, targeted ratio for most connected banks in scale-free

Links as "shock-absorbers" or "shock-transmitters"?

- Non-monotonic effect of connectivity on contagion
- M-shape relation is Erdos-Renyi and small-world. Different dynamic in scale-free
- \bullet Better capitalized systems \rightarrow connections more likely to act as "shock-absorbers"

Introduction	The model	Interbank network models	Tiered network	Conclusions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Outline

- 1 Introduction
 - Motivations
 - Our work
- 2 The model
- Interbank network models
 - Capitalization
 - Connectivity
- 4 Tiered network
 - Financial contagion
 - Bank run
- 5 Conclusions

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000	0000	●000	
Financial contagion				

Random credit shock

Erdos-Renyi

 Probability of contagion non-monotonic in connectivity, extent monotonically increasing inside the contagion window = "robust-yet-fragile" (as in Gai and Kapadia, 2010)

Random credit shock

- Probability of contagion non-monotonic in connectivity, extent monotonically increasing inside the contagion window = "robust-yet-fragile" (as in Gai and Kapadia, 2010)
- Tiered structure more robust to random idiosyncratic shock (lower probability of contagion), but accentuates "robust-yet-fragile" tendency

Introduction 00000	The model 00000	Interbank network models 0000	Tiered network ○●○○	Conclusions 00
Financial contagion				
Targeted	credit show			

Erdos-Renyi

ъ

• No major changes in Erdos-Renyi network

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000	0000	0●00	
Financial contagion				

Targeted credit shock

- No major changes in Erdos-Renyi network
- In tiered structure almost sure to observe contagion when the shock hits the most connected borrower

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000	0000	○○●○	00
Bank run				

Random funding shock

Erdos-Renyi

ullet Probability and extent of bank run \sim financial contagion

Random funding shock

- ullet Probability and extent of bank run \sim financial contagion
- Rise in probability and then drop. Stepwise increase in the number of hoarding banks
- Combination of probability and magnitude opposite to "robust-yet-fragile" for density close to real banking networks

Introduction 00000	The model	Interbank network models 0000	Tiered network ○○○●	Conclusions
Bank run				

Targeted funding shock

Erdos-Renyi

• Again no big differences in Erdos-Renyi case

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000	0000	○○○●	00
Bank run				

Targeted funding shock

Erdos-Renyi

- Again no big differences in Erdos-Renyi case
- In tiered structure along all the contagion window we are almost sure to observe systemic hoarding if a withdrawal affects a central lender

Introduction	The model	Interbank network models	Tiered network	Conclusions

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

- Introduction
 - Motivations
 - Our work
- 2 The model
- Interbank network models
 - Capitalization
 - Connectivity
- 4 Tiered network
 - Financial contagion
 - Bank run

Introduction	The model	Interbank network models	Tiered network	Conclusions
				•0

Main results

Topology does matter!

- Erdos-Renyi network in-between small-world and scale-free networks
- Relation between degree distribution and default distribution

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000	0000	0000	●0

Main results

Topology does matter!

- Erdos-Renyi network in-between small-world and scale-free networks
- Relation between degree distribution and default distribution

Real banking networks

- Tiered system more "robust" to random shocks, "yet fragile" to targeted shocks than Erdos-Renyi networks
- Diversities between financial contagion due to a random failure and systemic hoarding due to a random initial withdrawal

Introduction 00000	The model 00000	Interbank network models 0000	Tiered network 0000	Conclusions ⊙●

Future research

Next steps...

- Weighted network (i.e. introduce links' magnitude)
- Robustness with respect to the size of the network (i.e. vary the number of banks)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00000	The model 00000	Interbank network models	Tiered network 0000	Conclusions ⊙●

Future research

Next steps...

- Weighted network (i.e. introduce links' magnitude)
- Robustness with respect to the size of the network (i.e. vary the number of banks)

What lies ahead?

- Merge theoretical models with empirical stylized facts of real banking systems
- Introduce behavioural considerations and closer-to-reality rules in dynamic models to study the endogenous build-up of systemic risk

Introduction	The model	Interbank network models	Tiered network	Conclusions
00000	00000	0000	0000	00

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ